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Social networks in education commonly involve some form of grouping, such as

friendship cliques or teacher departments, and blockmodels are a type of sta-

tistical social network model that accommodate these grouping or blocks by

assuming different within-group tie probabilities than between-group tie

probabilities. We describe a class of models, covariate stochastic blockmodels

(CSBMs), that incorporates covariates into blockmodels. These models not only

estimate the effects of covariates in the presence of the block structure but also

can determine differential covariate effects such as within blocks versus

between blocks. For example, education researchers can now determine those

factors that mitigate relationships both within schools and between schools. We

introduce several CSBMs as examples and present a series of simulation studies

to investigate both the feasibility and some operating characteristics as well as

fit CSBMs to real network data.
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1. Introduction

In educational settings, school professional networks offer insight into how

social resources are shared and information is exchanged among teachers and

other staff. For example, advice-seeking social networks can reveal which teach-

ers are considered experts, whose advice is highly sought, which teachers are

well-connected in their school’s network, and which teachers are completely iso-

lated. Often substantive researchers are interested in the factors associated with

the presence of a particular relationship, since collegial interactions are associ-

ated with changes in teacher practice (Frank, Zhao, & Borman, 2004; Moolenaar,

Daly, & Sleegers, 2010). For example, Spillane, Kim, and Frank (2012) and

Hopkins, Lowenhaupt, and Sweet (2015) both find that being a formal leader

increases the likelihood of providing advice and that teachers tend to seek and

provide advice to other teachers who teach the same grade. Thus, it is not surpris-

ing that many standard statistical social network models, such as exponential

random graph models (Wasserman & Pattison, 1996) and latent space models

(Hoff, Raftery, & Handcock, 2002), accommodate covariates for inference about

individual- or pair-level variables.

Current social network models however do not adequately accommodate ties

between teachers in different schools. Analyzing ties across schools is relevant in
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many contexts, since schools do not operate in isolation and may share teachers,

coaches, or other personnel. Research on those ties that do exist across schools

may be important for understanding the functionality of the district as a whole

in addition to other factors such as which schools have more across-school ties,

which teachers’ attributes are related to these ties, or the general relationship

between across-school ties and within-school ties. Consider a school district with

k schools. The framework introduced by Sweet, Thomas, and Junker (2013) for

modeling the networks in these k schools is only useful if we assume that these k
schools are isolated. While important for many research questions, this frame-

work does not currently allow for ties across schools.

Instead, we propose to treat the district as a single network and model the k

school networks as subgroups or blocks within the larger district network. Social

network models that accommodate subgroup structure are commonly known as

blockmodels (White, Boorman, & Breiger, 1976) or stochastic blockmodels

(Holland, Laskey, & Leinhardt, 1983), and these models generally assume that

within-block ties have a different probability than across-block ties. The terms

a priori stochastic blockmodel and a posteriori stochastic blockmodel refers to

whether block membership is known or unknown, respectively, and are common

in the blockmodeling literature (Anderson & Wasserman, 1992; Nowicki & Snij-

ders, 2001; Wasserman & Anderson, 1987).

Because blockmodels historically have not included covariates, the purpose of

this article is to define a class of models, covariate stochastic blockmodels

(CSBMs), explore a variety of CSBMs, and illustrate how these models can be

applied in educational research. A covariate extension of the stochastic blockmo-

del was originally introduced by Airoldi, Choi, and Wolfe (2011) and our work

will explore similar models as well as some of the operating characteristics of

these models, which has not been studied. There are several other models that

incorporate covariates into extensions of stochastic blockmodels (Sweet, Tho-

mas, & Junker, 2014; Tallberg, 2004; White & Murphy, 2014), but these exten-

sions are relatively rare and these models have not been applied in education.

In Section 2, we formally introduce several CSBMs and describe our model-

fitting algorithm. We then discuss possible applications for these models as well

as consider potential issues in Section 2.2. Then, to illustrate the feasibility of

these models as well as to assess potential model-fitting issues and parameter

recovery, we present a series of simulation studies in Section 3, followed by

an application using real advice-seeking network data in Section 4. We conclude

by describing future work and additional applications in Section 5.

2. Model

The CSBM framework is a class of blockmodels that accommodates covari-

ates in an additive way, so that tie probability is influenced by both block mem-

bership and covariates. We then assume covariates influence the probability of a
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tie independently of the block membership, which is similar to the model

proposed by Airoldi et al. (2011) and unlike other models that incorporate

covariates into the block membership assignment mechanism (Tallberg, 2004;

White & Murphy, 2014).

We define a CSBM using a hierarchical Bayesian model. Let Y denote the bin-

ary sociomatrix such that Yij ¼ 1 implies a tie from individual i to individual j. If

the tie is directed, we consider i the sender of the tie or relationship and j the

receiver. For example, in an advice-seeking network, Yij ¼ 1 indicates that i

seeks advice from j. Let gi be the block or group membership indicator vector

for individual i such that gik ¼ 1 if and only if i is in group k and 0 otherwise.

Undirected relationships are also possible and CSBMs can accommodate these

networks as well by assuming Yij ¼ Yji.

CSBMs incorporate covariates into the model in an additive way through

the log odds probability of a tie. Since the probability of a tie has support

(0, 1), we transform the tie probability to the log odds or logit scale, so that

the support is now R. Then, we can easily incorporate a linear component

bXij, where Xij is any collection of node- or edge-level covariates and b is the

vector of regression coefficients. For example, if teachers in a district are the

nodes, then teacher attributes such as experience or position are node-level

covariates. These covariates may be related to either the sender or the receiver

such as the sender’s experience or position. Edge-level or pairwise covariates

are based on both teachers’ attributes such as difference in the amount of pro-

fessional development and the indicator that both teachers teach the same

grade.

An example of such a CSBM is given as:

Yij ~ BernoulliðpijÞ;

pij ¼
exp
�

gT
i logitðBÞgj þ bXij

�
1þ expfgT

i logitðBÞgj þ bXijg
;

b ~ MVNðm;
P2Þ;

gi ~ Multinomialð1; yÞ;
Blm ~ Betaðalm; blmÞ;

ð1Þ

where logit (B) is defined as logit ðBlmÞ for all entries of B. Note also that B is a

k � k matrix, where k is the number of blocks or subgroups. Then, the entry

denoted by gT
i Bgj is the probability of a tie from an individual in i’s block to

an individual in j’s block. We generally assume that within-block ties are more

likely than across-block ties, although the reverse is also possible. We enforce

this assumption through the prior specification on B. Alternatively, we may also

assume part or all of this matrix to be known a priori. Note also that B is sym-

metric if the network is undirected. We also include a prior for b as an example

though the prior need not be normal.
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Note that when block membership is not known a priori, it must be estimated,

and in Equation 1, we use a multinomial prior for each gi. One such example is a

friendship network in which students cluster together in a finite number of sub-

groups, but the individual identities within each clique are not known. We define

this model as the a posteriori CSBM. Note that the model proposed by Airoldi

et al. (2011) differs from our a posteriori CSBM in that they also included ran-

dom effects for each node.

There are many situations in education in which block membership is known.

For example, given a network of schools, each school could be considered as a

subgroup, and individual membership to each school is known and does not need

to be part of the model. If the block memberships are known, then the model is

called the a priori CSBM and is given below as:

Yij ~ BernoulliðpijÞ;

pij ¼
exp
�

gT
i logitðBÞgj þ bXij

�
1þ expfgT

i logitðBÞgj þ bXijg
;

b ~ MVNðm;
P2Þ;

Blm ~ Betaðalm; blmÞ:

ð2Þ

Note that the a priori CSBM can be thought of as a reparameterization of a

logistic regression model, although we caution that this model should be inter-

preted carefully. Instead of using a B matrix or in our case a logit (B) to describe

the additive effects of block membership, we can incorporate group–group prob-

abilities through indicators and regression coefficients. Such a model is given as:

Yij ~ BernoulliðpijÞ;
logitðpijÞ ¼

X
l

X
m
glmI½gil¼1�I½gjm¼1� þ bXij;

b ~ MVNðm;�2Þ;
glm ~ Betaðalm; blmÞ;

ð3Þ

where l and m index the sender’s and receiver’s blocks, respectively, and

glm ¼ logitðBlmÞ in Equation 2.

It is important to realize that without informative priors on the entires of the B

matrix, the model is not identified. Without these priors, we make no assumption

about the probability of within-block ties as compared to across-block ties. With-

out this or an analogous assumption, block structure no longer is meaningful and

block membership does not contribute to the variability in network structure.

Thus, if one chooses to fit the a priori CSBM using logistic regression, it should

be done in a Bayesian framework taking advantage of informative priors, or if

done in a frequentist setting, it should employ some kind of constraint to accom-

modate the block structure of the network.

Turning our attention to the covariate part of the CSBM, there are situations in

which a covariate is believed to have a differential effect depending on whether

the tie occurs within a block or between blocks. For example, elementary school
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teachers tend to seek advice from teachers in their school, who teach the same

grade (Spillane, Kim, & Frank, 2012), but this factor may not be a strong predic-

tor of across-school advice ties. Alternatively, we might find that principals tend

to seek advice outside their home schools because they are communicating with

other principals, making it unlikely they will ask advice within their own schools.

In these situations, we should model the covariates for ties within blocks and

across blocks separately. In other situations, we may choose to model covariates

as having constant effects across all individuals regardless of block membership.

To accommodate covariates that vary depending on the nature of the tie

(whether it is within a block or across blocks), we introduce the a priori random

covariate stochastic blockmodel (RCSBM) along with the a posteriori RCSBM.

The a posteriori RCSBM is given as:

Yij ~ BernoulliðpijÞ;

pij ¼
expfgT

i logitðBÞgi þ b1XijIgi¼gj
þ b2XijIgi 6¼gi

g
1þ expfgT

i logitðBÞgi þ b1XijIgi¼gj
þ b2XijIgi 6¼gj

g ;

gi ~ Multinomialð1; yÞ;
b1 ~ MVNðm1;

P2
1Þ;

b2 ~ MVNðm2;
P2

2Þ;
blm ~ Betaðalm; blmÞ:

ð4Þ

Within each of these models, additional specifications are possible depending

on the situation. For example, the covariate effect may vary depending on

whether the tie occurs within blocks or between blocks, and we could also allow

within-block covariate effects to vary by block. Then, b1XijIgi¼gj
becomesP

k b1kXijIgi¼gj¼k . Of course we could further extend this notion of random

effects to allow random covariate effects depending on which pair of blocks are

involved in the tie for between-block covariate effects, essentially producing a

matrix of covariate effects. The possibility of block-level covariates also exists,

but block covariates introduce an identifiability issue with respect to B and

should be used only if B is fixed. If we fix B, we essentially force the within- and

between-block probabilities to be known, which can greatly decrease the utility

of the model. But if the interest is really on estimating between- and within-block

covariate effects, then the elements of the B matrix merely operate to constrain

the parameter space.

Additional parameters can also be added to the model depending on prior

specification. For example, we specify Blm ~ Betaðalm; blmÞ and we may want

to estimate the hyperparameters alm and blm. Furthermore, we might also include

additional dependence assumptions among parameters with how we specify

prior distributions. For example, we might have reason to model within- and

between-block covariate effects as coming from the same distribution. Finally,

we can extend these models by adding an additional level of hierarchy. Rather

than generating each gi from the same multinomial distribution (y), we could
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instead generate gi and gj for each tie from their own multinomial distribution (yi

and yj, respectively). This extension of the blockmodel was first introduced by

Airoldi, Blei, Fienberg, and Xing (2008) and the covariate version by Sweet,

Thomas, and Junker (2014).

2.1. Model Estimation

To fit CSBMs, we use a Markov chain Monte Carlo algorithm (MCMC;

Gelman, Carlin, Stern, & Rubin, 2004), where the joint likelihood of the model

can be written as:

PðY jg;B; bÞPðBÞPðgÞPðbÞ ¼
Y

i6¼j

PðYijjgi; gj;BÞ
Y

l;m

PðBl;mÞ
Y

i

gipðbÞ: ð5Þ

If block memberships are estimated, they are updated using Gibbs updates and

the complete conditional distribution is given as:

Pðgij . . . Þ / MultinominalðpÞ;
log pk ¼

X
i6¼j

Yij½logitðBÞ þ bXij� � log

�
1þ exp

�
logitðBÞ þ bXij

��
;

ð6Þ

where pk is the probability of belonging to group k.

All other parameters in the model are updated using Metropolis–Hastings

updates. The regression coefficients b can be updated using a random walk pro-

posal distribution, and depending on the specific model, it may be possible to

update hyperparameters with Gibbs updates. To estimate B, we reparameterize

B and update instead the log odds of B again using a normal random walk pro-

posal distribution. Without covariates, closed form complete conditionals do

exist and B can be updated using a Gibbs step (Sweet et al., 2014).

The MCMC algorithm is coded in R (R Development Core Team, 2010) and

this code is available as supplemental material. Note that our code is for binary

network data only. These models can also be estimated using the R package CID-

networks (Dabbs, Junker, Sweet, & Thomas, 2014), which uses a probit link

function and accommodates any type of tie data.

2.2. Considerations

2.2.1. Applications and models. CSBMs are a useful class of models for research-

ers interested in identifying and measuring factors associated with network ties in

the presence of subgroups. Subgroup structure is common in many social orga-

nizations, either through formal organization (e.g., departments in a high school)

or as an outcome of social interaction (e.g., proximity or homophily). Given a

friendship network of students, students may self-group by grade but choose their

friends based on a number of other characteristics such as race, gender, or com-

mon interests. We could also estimate attributes associated with friendships
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across classrooms. Are these friendships based on other shared activities such as

sports teams or neighborhood playgroups or are there certain attributes that these

students possess such as age or having a leadership role?

Specifically, these models are best-suited for covariates that are unrelated to

the subgroup. For example, consider an advice-seeking network of teachers in a

high school and suppose the blocks represent departments. That is, teachers tend

to seek out other teachers within their own department for advice. Then, we could

use CSBMs to investigate the effects of teacher attributes such as race, gender,

experience, and instructional practices on advice-seeking. Because college major

tends to be strongly associated with teaching department, including that as an

node-level or even as a dyad-level covariate is problematic since the block mem-

bership is based on department. This is analogous to the practice of removing col-

linear covariates in multiple regression (Weisberg, 2005) and does not detract

from the utility of the model.

CSBMs are also a flexible class of models. CSBMs can accommodate a vari-

ety of block-dependent covariate effects, such as differential effects for within-

group ties and between-group ties. In addition, CSBMs can accommodate other

random effects for covariates. For example, we might need a model in which cov-

ariate effects vary by block. Consider elementary school friendship networks in

which students are blocked by grade. We might hypothesize that the effect of

gender on friendship ties becomes increasingly positive as students get older, that

is, students select students of the same gender for friendship ties, so the effect of

the tie-level covariate of ‘‘being the same gender’’ varies across the grade-level

blocks. Such a block-dependent covariate could also be accomplished by incor-

porating block-specific covariates directly into the B matrix.

2.2.2. Estimation and identifiability. One issue common to all a posteriori

blockmodel-fitting algorithms is that of label switching. When block member-

ship is unknown, the CSBM algorithm estimates the group identity for all indi-

viduals, creating several identical solutions. Such an identifiability issue is

handled in a number of ways (Celeux, 1998; Jasra, Holmes, & Stephens, 2005;

Stephens, 2000). We choose to postprocess the block memberships and relabel

in order of average node ID, which is a simple way to obtain a unique solution.

Labeling of blocks becomes an issue when calculating classification rates, espe-

cially when block membership is not recovered with near-perfect accuracy.

Another potential identifiability issue that is more particular to CSBMs

involves the B matrix and the number of ties across groups, since the inclusion

of covariates may increase the number of between-block ties. Separating the

effects of the covariate with the estimates of the B matrix may prove challenging

in some circumstances, and for our particular applications, we assume between-

block tie probabilities to be low (i.e., the off-diagonal elements of the B matrix

are small) and suggest using informative priors or even fixing the off-diagonal

values of the B matrix to ensure that covariate effects are not affected.
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We also consider the challenge of estimating group membership. Local mod-

ality is certainly an issue with group membership estimation and we recommend

using a clustering algorithm to generate starting values for group membership in

the MCMC algorithm. If starting values for group membership are selected ran-

domly or fixed so that all individuals begin in the same group, MCMC conver-

gence in a local mode is more likely and this issue is incensed as subgroup

density decreases and the number of blocks increases.

It is unsurprising that increasing the number of parameters in any CSBM

increases the number of possible identification issues and we conclude our dis-

cussion with the a posteriori RCSBM in which both group membership is

unknown and covariate effects differ for across-block and within-block ties. This

particular model is likely to be the most difficult to fit of the CSBMs presented in

this article. Estimates for covariates are necessarily dependent on block member-

ship estimates and errors in one create errors in the other. These models are likely

best-suited for networks with dense subgroups and most likely small networks,

for example, a class friendship network or small organization network.

Despite these issues, which are not difficult to circumvent, these models are

quite useful. In Section 3, we explore these issues in more detail though simula-

tion studies to illustrate under which conditions these models can and should be

used. Then, we present empirical examples of fitting these models in Section 4.

3. Simulations

We conducted three simulation studies to illustrate the utility of these models

but also to investigate some underlying operating characteristics that may affect

parameter estimation. We first explore whether estimating the B matrix influ-

ences covariate effect parameter recovery in a CSBM. In the next simulation

study, we explore the effect of covariates on recovering group membership, and

in the third study, we explore the effects of subgroup density on recovering group

membership. These simulations are not meant to be exhaustive; merely they are

an exploration into these models and preliminary results can be used to inform

future work in this area.

3.1. Simulation 1: Investigating Possible Identifiability Between-Group Tie

Probability Matrix and Covariate Parameters

There may be an identifiability issue when simultaneously estimating the

within- and between-group tie probability matrix (B) and regression coefficients.

When all elements of B can vary and b is unconstrained, changes in within-block

probability of a tie may result from a change in b or a change in entries of B. For

example, a positive covariate may increase the number of both within- and

between-group ties and this effect may instead be captured in the estimates of the

entries of B as opposed to the covariate effect. Thus, to investigate this possibil-

ity, we explore covariate parameter recovery when B is fixed or estimated.
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We simulated 20-node networks of three subgroups and varied both the effects

and the numbers of covariates. Each covariate was then included in our data gen-

erating model as both a sender covariate and a receiver covariate, that is, Xij ¼ Xi

for all j for sender covariates and Xij ¼ Xj for all i for receiver covariates. We

considered four combinations of one or two pairs of covariate effects:

b ¼ ð2;�1Þ; ð3; 1Þ; ð2; 1;�1�3Þ; ð�2; 1; 1�3Þ, where sender effects are listed

first, and three different covariate variances, s2 ¼ 0:1; 1; 25. Note that these

parameter choices include sender and receiver covariates with similar effects

as well as opposite effects to reflect a range of effects on between- and within-

block tie probabilities. The generative model is given as:

Yij ~ BernoulliðpijÞ;

pij ¼
expfgT

i logitðBÞgj þ bXijg
1þ expfgT

i logitðBÞgj þ bXijg
;

Xij ~ Nð0;s2Þ;

B ¼
 

0:25 0:01 0:01

0:01 0:25 0:01

0:01 0:01 0:25

!
;

gi ~ Multinomial
1

3
;

1

3
;

1

3

0
@

1
A;

ð7Þ

where s2 ¼ 0:1; 1; 25.

We simulated 100 data sets for each simulation for each of the four covariate

combinations. We then fit the simulated data set using three different models that

differ only with respect to the B matrix estimation. Model 1 assumes the B matrix

is known, Model 2 assumes the off-diagonal elements of the B matrix are known,

but the diagonal elements must be estimated, and Model 3 assumes the entire B

matrix is unknown. Thus, Model 3 is given as:

Yij ~ BernoulliðpijÞ;

pij ¼
expflogit gT

i logitðBÞgj þ bXijg
1þ expfgT

i logitðBÞgj þ bXijg
;

Bmm ~ Betað3; 1Þ;
Blm ~ Betað1; 30Þ;

ð8Þ

where gi is not estimated. To assess model fit, we examine parameter recovery.

The results from our MCMC algorithm are essentially samples from the posterior

distributions for each parameter. Using equal-tailed 95% credible intervals (CIs),

we can determine whether a parameter is accurately recovered based on whether

it is contained in the 95% CI. For each model fit, we report the coverage prob-

ability, that is, the proportion of the 100 simulations that each parameter is

recovered.

Table 1 displays the parameter recovery rates and we find that parameters are

recovered approximately 88–98% of the time. Coverage probabilities do not
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appear to be influenced by the model, which suggests that estimating B does not

affect covariate parameter estimation. Coverage may decrease slightly as the

number of covariates increases, but it is not obvious from these results. We also

note that coverage does not seem to vary based on the variance of the X.

3.2. Simulation 2: Effects of Covariates on Group Membership Recovery

Another potential estimation issue may occur when jointly estimating group

membership and covariates. We suspect that increasing numbers of covariates

would decrease the accuracy with which we can estimate group membership.

Thus, in this simulation, we explore the effects of additional covariates on the

group membership estimation.

We generated networks of size 30 and 75 with three and five subgroups,

respectively, and included either one, two, or four pairs of sender and receiver

covariates. For each combination of group number and covariate effects, we

simulated 100 data sets from the following CSBM:

Yij ~ BernoulliðpijÞ;

pij ¼
expfgT

i logitðBÞgj þ bXijg
1þ expfgT

i logitðBÞgj þ bXijg
;

Xi; Xj ~ Nð0;s2Þ;
Bmm ¼ :2;
Blm ¼ :01;
gi ~ Multinomialð1!=KÞ;

ð9Þ

where K is the number of subgroups and s2 ¼ :01; :1; 1.

We then fit the simulated network data and covariates using an a posteriori

CSBM. To optimize convergence, we used a community detection random walk

algorithm through the igraph R package (Csardi & Nepusz, 2006) to determine

group membership starting values. This particular algorithm, originally intro-

duced by Pons and Latapy (2005), uses a random walk along the network as part

of a distance measure between two vertices and then employs a hierarchical clus-

tering algorithm to determine how nodes are clustered into communities, and we

constrain the number of clusters to be equal to the number of blocks. Note that

there are a variety of other community detection algorithms, for example, igraph
has eight algorithms including methods by Girvan and Newman (2002) and

Raghavan, Albert, and Kumara (2007). For methods that scale to very large

networks, see Amini, Chen, Bickel, and Levina (2013).

Our MCMC algorithm generates draws for group membership for each node

and we use the posterior mode as the estimated block membership. We then com-

pare the estimated group membership with the true group membership, using an

algorithm that permutes the rows to optimize the trace of the classification

matrix. This then generates the labels that best align with the true groups. To
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assess our group membership estimates, we use the classification rate defined as

the proportion of nodes that were correctly classified.

Classification rates for node membership are summarized in Table 2. The

mean classification rate is determined by taking the average of the 100 classifi-

cation rates computed for each model fit. Along with the mean, we include the

standard deviation (SD) and two tie density measures: the within-group and

between-group tie density. We define the within-group density as the number

of observed ties that occur within the same block divided by the total number

of ties within the same block and between-group density as the number of

observed ties that occur between different blocks divided by the total number

of possible ties between different blocks. This is not based on the model since

we use the true block memberships to calculate these values.

Block membership recovery does not vary greatly across conditions, but

there are some detectable patterns. When the variance of the covariates

increases to 1, block classification rates are slightly lower. Similarly, we also

notice that in general, the eight covariate models have the best classification

rates, but there isn’t a noticeable difference between two and four covariates.

The models when b ¼ ð2; �1Þ do have slightly lower classification rates than

the other two- and four-covariate models, but it’s not clear that this is due to

the values of the covariate effects, since we do not observe a similar pattern for

b ¼ ð2; 1; �1; �3Þ.
We also note that the five-block model fits have slightly better classification

rates than the three-block model fits. Although we believe that increasing the

numbers of blocks generally increases the difficulty in estimating block

TABLE 1.

(Simulation 1) Coverage Probabilities for Covariate Parameters

Model Var(X)

True b

(2, 1) (3, 1) (2, 1, �1, �3) (�2, 1, 1, �3)

1 0.1 .91 .97 .95 .93 .97 .95 .93 .91 .95 .97 0.92 .92

1 .92 .95 .95 .94 .93 .98 .91 .98 .95 .91 .93 .98

25 .91 .91 .93 .95 .95 .94 .93 .93 .91 .92 .93 .95

2 0.1 .92 .97 .93 .95 .96 .95 .96 .91 .95 .95 .90 .87

1 .89 .94 .92 .93 .95 .96 .91 .96 .94 .90 .93 .96

25 .90 .92 .94 .95 .90 .93 .93 .94 .90 .96 .91 .94

3 0.1 .92 .95 .92 .94 .94 .95 .97 .91 .93 .96 .88 .90

5 .92 .97 .94 .97 .92 .95 .90 .97 .95 .90 .89 .95

25 .92 .95 .95 .95 .94 .95 .96 .94 .93 .94 .93 .96

Note. We fit each network with three models: B is fixed (Model 1), the diagonal elements of B are

estimated (Model 2), and all of B is estimated (Model 3). CSBM ¼ covariate stochastic blockmodel.
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membership, the five-block networks had 75 nodes and the three-block networks

had 30 nodes. Thus, on average, the five-block networks had 15 nodes per block

and the three-block networks has 10 nodes per block. While an increase from 30

nodes to 75 nodes may not seem like a huge leap, this corresponds to an increase

in the number of ties from 870 to 5,550. In addition, there appears to be little rela-

tionship between tie densities and classification rates. In our experiences fitting

noncovariate versions of SBMs, we find classification rates are generally best

when there are large differences in within-block and between-block tie densities

and the between-block tie density is very low, so it may at first seem surprising

that this pattern did not hold for the CSBMs. This is likely due to the fact that

covariate effects affect both within-block and between-block tie densities, so the

observed within-block and between-block tie densities are not informative in the

presence of covariates. The converse is also likely true: When we condition on

the covariates, classification rates improve.

TABLE 2.

(Simulation 2) A posteriori CSBM Block Membership and Classification Rates and

Within- and Between-block Densities

Three Blocks Var(X)

True b

(2, 1) (3,1)

(2, 1,

�1, �3)

(�2, 1,

�1, �3)

(3, �2, 1, 0,

3, �2, 1, 0)

.01 Mean (SD) .71 (.12) .72 (.12) .71 (.11) .72 (.12) .74 (.13)

Within .20 .20 .20 .21 .22

Between .01 .01 .01 .01 .01

.1 Mean (SD) .68 (.12) .73 (.12) .71 (.12) .72 (.12) .83 (.11)

Within .22 .24 .25 .25 .29

Between .01 .01 .02 .02 .03

1 Mean (SD) .66 (.10) .66 (.11) .67 (.13) .67 (.12) .73 (.13)

Within .31 .35 .38 .37 .40

Between .05 .11 .15 .15 .19

Five Blocks

.01 Mean (SD) .78 (.11) .78 (.12) .77 (.12�) .76 (.11) .83 (.10)

Within .20 .21 .21 .21 .21

Between .01 .01 .01 .01 .01

.1 Mean (SD) .70 (.11) .81 (.09) .72 (.12) .72 (.11) .89 (.07)

Within .22 .24 .25 .25 .27

Between .01 .02 .02 .02 .03

1 Mean (SD) .53 (.08) .69 (.10) .64 (.11) .63 (.11) .77 (.11)

Within .31 .35 .37 .37 .41

Between .05 .10 .14 .14 .21
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We also estimated parameter recovery with the a posteriori CSBM to

explore the effects of estimating group membership on covariate parameter

recovery. Table 3 reports coverage rates which noticeably decrease as covari-

ate variance increases, and this result aligns with our finding of reduced clas-

sification rates with larger variances. A decrease in parameter recovery as

covariate variance increases was not observed in Section 3.1, but covariate

effect parameter recovery is likely correlated with block membership

recovery.

We also notice that b ¼ ð2; �1Þ was recovered less often than other covariate

effects, which indicates a possible issue with estimating opposing sender and

receiver effects. Covariate effects of ð2; �1Þ suggest individuals with larger val-

ues of that covariate x are more likely to send ties, but that individuals with larger

x are less likely to receive ties. We found that block membership recovery was

also smaller, which suggests poor b recovery is due to poor block classification.

Such an identification issue does make sense; these covariate effects results in a

systematic increase in ties between some individuals and decrease in ties

between others, a structure that is modeled through the blockmodel and thus

negated when estimating covariate effects. However, in most of the cells, covari-

ate effect parameter recovery was noticeably better than block membership

recovery, which suggests the likelihood of an additional or alternative explana-

tion. Finally, we were quite surprised that parameter recovery was better for the

three-block model than the five-block model, given the large increase in network

size and the higher classification rates for the five-block model. One explanation

might be that incorrectly assigning a node to a block has greater negative impacts

on covariate parameter estimation, as the number of possible wrong blocks

increases.

3.3. Simulation 3: Effects of Subgroup Density and Number of Subgroups on

Group Membership Recovery

Networks are generally sparse with subgroups being quite dense. There are

situations in which the subgroups are also somewhat sparse, so we investigate

what ranges of subgroup density can be used to accurately recover group mem-

bership. In this simulation, we consider networks with a variety of numbers of

nodes, within-block tie probabilities, and numbers of blocks; we consider net-

works generated from 3-, 5-, and 10-block CSBMs; and we consider network

sizes that are 10 times, 15 times, or 20 times the number of blocks For example,

we generate networks with 30, 45, and 60 nodes for a three-block CSBM. The

data generating model is given as:
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Yij ~ BernoulliðpijÞ;

pij ¼
expfgT

i logitðBÞgj þ bXijg
1þ expfgT

i logitðBÞgj þ bXijg
;

Xij ~ Nð0; :1Þ;
gi ~ Multinomialð1!=GÞ;

ð10Þ

where b ¼ ð�2; 1; � 1; 3Þ for all networks, and we used three pairs

of within-group and between-group tie probabilities, ðBmm;BemÞ =

ð0:35; 0:01Þ; ð0:2; 0:01Þ, and ð0:1; 0:001Þ. Note that we specifically chose to

also vary the between-block tie probabilities to explore the relationship

between within-block and between-block tie probabilities and classification

rates.

TABLE 3.

(Simulation 2) Covariate Effect Parameter Recovery in the A Posteriori CSBM

b

Three-Block Five-Block

Var(X) Var(X)

0.01 0.1 1 0.01 0.1 1

2 .95 .85 .65 .98 .57 .09

�1 .90 .91 .83 .92 .83 .49

3 .92 .94 .83 .90 .83 .70

1 .96 .97 .93 .91 .93 .91

2 .95 .88 .84 .90 .79 .80

1 .99 .89 .94 .93 .79 .83

�1 .97 .90 .91 .90 .87 .86

�3 .94 .88 .87 .91 .78 .70

�2 .91 .92 .87 .90 .78 .76

1 .97 .93 .89 .93 .77 .82

1 .97 .92 .94 .91 .84 .83

�3 .96 .85 .83 .89 .82 .65

3 .94 .93 .89 .94 .96 .91

�2 .95 .95 .90 .97 .92 .91

1 .91 .96 .91 .95 .97 .89

0 .94 .98 .92 .86 .91 .94

3 .94 .95 .90 .95 .94 .91

�2 .94 .96 .97 .94 .99 .94

1 .96 .95 .92 .97 .92 .95

0 .97 .94 .96 .98 .93 .94
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For each combination of network size, number of blocks, and B, we simulated

100 networks. Table 4 shows the mean classification rate and SD for block mem-

bership, and in general, increasing the number of nodes per block (i.e., increasing

network size and keeping the number of blocks fixed) improves block member-

ship estimation. We also notice that block classification rates dramatically

improve, as the within-block tie probability increases from .2 to .35, and classi-

fication rates do not generally increase when Bii increases from .1 to .2, but this is

unsurprising because the off-diagonals of the B matrix are different. One might

assume that accurate block membership estimation depends on absolute differ-

ences between within-block and between-block tie probabilities, but theoretical

results with a two-block SBM suggest that the values of such a threshold depend

on network size as well as the within- and between-block tie probabilities (Abbe,

Bandeira, & Hall, 2014) and our results appear to align with these findings. When

Bii ¼ :2, we find within-block densities of .25 and between-block densities of .02

in the generated data given the true blocks. When Bii ¼ :1, those densities were

.15 and .002, and these pairs of densities resulted in similar block membership

estimation rates. One explanation is that as within-block densities decrease, the

between-block densities must decrease at a faster rate to recover block member-

ship, and Abbe et al. (2014) report an exact threshold that is similar for the two-

block model.

We again consider regression coefficient parameter recovery, and the patterns

for covariate effect recovery given in Table 5 are less consistent with the patterns

observed for block membership classification rates. For example, we notice that

block estimation improves as as the number of nodes per block increases, but this

pattern is not consistent for covariate effects. We also saw block classification

rates decline as the number of blocks increases while keeping the expected num-

ber of nodes per block constant, for example, the first row of Table 5 compares

networks with an average of 10 nodes per block and we see a slight decrease in

parameter recovery. But for covariate effects, this decline is not steep nor is it

constant for every covariate parameter. In fact, we notice such a monotonic

decline most with b ¼ 3, which may be indicative of difficulty of recovering a

parameter closer to the boundary of the parameter space as opposed to an issue

with parameter recovery. The best evidence that parameter recovery rates align

with block membership estimation is when we compare within-block tie densi-

ties. For example, comparing covariate effect recovery rates for Bii ¼ :2 versus

Bii ¼ :35, parameter recovery generally appears to be better in the latter set of

simulations for most but not all cells.

However, Table 5 indicates that covariate parameter recovery is generally

quite good even in situations in which block membership estimation was less

than ideal. For example, consider rows 1, 2, and 4 of Table 5. For all cells but

one, block membership classification rates are less than .80, but parameter recov-

ery rates suggest decent parameter recovery. These patterns suggest that covari-

ate estimates may indeed be affected by extremely poor block membership, but

Sweet

649



that block membership recovery is not necessary for decent covariate estimation.

Finally, we note that we did not observe the poor parameter recovery seen in

Simulation 2 with the five-block network and b ¼ ð2; �1Þ. In this simulation,

we used generative values of b ¼ ð�2; 1; �1; 3Þ, which do not have opposing

sender/receiver effects.

4. Fitting CSBMs to Education Data

To illustrate the a priori CSBM and a posteriori CSBM, we use advice-seeking

network data (Hopkins, Spillane, Jakopovic, & Heaton, 2013; Spillane &

TABLE 4.

(Simulation 3) The Average Block Membership Classification Rates and Standard

Deviations

3-Block 5-Block 10-Block

Bii ¼ :1 n ¼30 .71 (.13) n ¼ 50 .62 (.11) n ¼ 100 .54 (.08)

n ¼ 45 .83 (.12) n ¼ 75 .76 (.11) n ¼ 150 .69 (.09)

n ¼ 60 .92 (.06) n ¼ 100 .89 (.06) n ¼ 200 .83 (.07)

Bii ¼ :2 n ¼ 30 .72 (.12) n ¼ 50 .70 (.10) n ¼ 100 .54 (.08)

n ¼ 45 .94 (.07) n ¼ 75 .72 (.11) n ¼ 150 .77 (.08)

n ¼ 60 .97 (.02) n ¼ 100 .96 (.03) n ¼ 200 .93 (.03)

Bii ¼ :35 n ¼ 30 .98 (.03) n ¼ 50 .94 (.06) n ¼ 100 .88 (.06)

n ¼ 45 .99 (.02) n ¼ 75 .97 (.01) n ¼ 150 .98 (.01)

n ¼ 60 1.00 (.01) n ¼ 100 .99 (.01) n ¼ 200 .99 (.01)

TABLE 5.

(Simulation 3) Covariate Parameter Recovery Rates

3-Block 5-Block 10-Block

b �2 1 �1 3 b �2 1 �1 3 b �2 1 �1 3

Bii ¼ :1 n ¼ 30 .97 .92 .99 .92 n ¼ 50 .88 .98 .94 .89 n ¼ 100 .83 .95 0.92 .67

n ¼ 45 .83 .94 .93 .93 n ¼ 75 .93 .98 .91 .83 n ¼ 150 .81 .94 0.91 .63

n ¼ 60 .90 .94 .95 .95 n ¼ 100 .93 .93 .97 .87 n ¼ 200 .89 .92 1.00 .79

Bii ¼ :2 n ¼ 30 .92 .93 .92 .85 n ¼ 50 .93 .96 .93 .89 n ¼ 100 .88 .91 .99 .85

n ¼ 45 .90 .95 .97 .95 n ¼ 75 .78 .77 .84 .82 n ¼ 150 .87 .97 0.93 .86

n ¼ 60 .95 .94 .93 .96 n ¼ 100 .95 .93 .98 .97 n ¼ 200 .97 .97 0.97 .92

Bii ¼ :35 n ¼ 30 .95 .96 .93 .92 n ¼ 50 .92 .97 .96 .95 n ¼ 100 .98 .96 0.93 .98

n ¼ 45 .91 .98 .97 .94 n ¼ 75 .96 .92 .94 .94 n ¼ 150 .96 .96 0.96 .94

n ¼ 60 .96 .95 .96 .94 n ¼ 100 .92 .95 .92 .95 n ¼ 200 .92 .96 0.91 .94
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Hopkins, 2013) taken from one suburban district in the Midwestern United States

in 2013, and we use the pseudonym Auburn Park for the name of the district. The

data include school staff surveys as well as social network data from 14 elemen-

tary schools. Staff members were asked to name the individuals to whom they

seek instructional advice and information, and they were able to nominate any

other staff member in the district.

The advice-seeking network is given in Figure 1, and this particular represen-

tation is simply an abstraction of the adjacency matrix. A black box in row s and

column r corresponds to Ysr ¼ 1 and indicates the presence of a tie from the indi-

vidual s to individual r, and the lack of a tie is indicated by the absence of a black

box. Note that teachers are ordered by school, so that block structure by school is

visible. Due to the large size of the network ðn ¼ 389Þ, the block structure is

more apparent in this representation than in a typical network plot of vertices and

arrows.

Note also that the network is not symmetric since advice seeking is not always

reciprocated. Thus, in our context, our senders are the individuals seeking advice

or information and the receivers are the individuals providing advice or informa-

tion. The tie then indicates an advice/information relationship from the seeker to

the provider.

The network is overall quite sparse, which is unsurprising given the size of the

network and the fact that most individuals have few opportunities to interact with

one another because they work in different schools. Table 6 shows the number of

staff in each school and several measures of density at both the network and

school levels. The overall density and within-school and between-school tie den-

sities for the full network of 389 professionals are shown along with within-

school tie densities for each school. Note that we define density as the proportion

of observed ties out of all possible ties which in this situation is 389� 388, and

we define within-school tie density as the total number of ties between teachers

in the same school divided by the sum of the number of possible ties within each

school, that is,

Pn

ij
YijIgi¼gjP

k
nkðnk�1Þ

, where gi and gj are the school IDs for teacher i and j,

and nk is the number of teachers in school k, so that
P

knk ¼ N : The between-

school tie density is defined as the number of ties observed between teachers

in different schools divided by the total number of possible ties between

schools,

Pn

ij
YijIgi 6¼gj

NðN�1Þ �
P

k
nkðnk�1Þ

.

The overall tie density is very low (.01) with a noticeable difference between

within-school (.11) and between-school (.002) densities. Within-school tie den-

sity also varies slightly, ranging from .09 to .20, and the higher densities are to

some degree associated with smaller schools (r ¼ �.72). Despite these low den-

sities, there is still a substantial difference between within-school and between-

school tie densities, which suggests that a CSBM is an appropriate model.
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In addition, we explore two measures of node centrality: in-degree and out-

degree. Out-degree is the number of ties each node sends and in-degree is the

number of ties received by a node. Mean in-degree and out-degree across all

389 nodes are both 3.77, but the distributions of in-degree and out-degree are

quite different. Figure 2 show histograms for in-degree (left) and out-degree

(right). In general, staff members tend to seek advice from two to six people,

whereas the majority of staff are not solicited for advice at all. The staff members

who do provide advice tend to provide advice to a large number of staff members.

4.1. Fitting A Priori CSBM to Auburn Park Data

We first fit an a priori CSBM to the advice network and include four

individual-level indicator covariates: two are sender-related and two are

receiver-related. We have two leader indicator variables: an individual is a con-

tent leader and an individual is a noncontent leader, such as a principal. For each

of these two variables, we have seeker covariates and receiver covariates. The

covariates are then: sender is a content leader, receiver is a content leader, sender

is a noncontent leader, and receiver is a noncontent leader. While we expect that

FIGURE 1. The Auburn Park advice-seeking adjacency matrix represented visually. A

black box represents a tie and the presence of a white box represents the absence of a tie.

Individuals are ordered by school. Note that within-school ties are more likely than

between-school ties although within-school ties are quite sparse even in some of the

smaller schools.
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content leaders are no more or less likely to seek advice, we do expect that they

would be sought for advice more often than other teachers.

Furthermore, we might hypothesize that these two classes of formal leaders

influence advice seeking differentially depending on whether individuals are

in the same or different schools, and CSBMs allow us to examine ties across

blocks. Thus, we included an indicator Z for whether two individuals are in the

same block, that is, Zij ¼ 1 if i and j are in the same block and 0 otherwise. The

full CSBM is given as:

Yij ~ BernoulliðpijÞ;

pij ¼
expfgT

i logitðBÞgj þ bXijg
1þ expfgT

i logitðBÞgj þ bXijg
;

bXij ¼ ðb1aX1ij þ � � � b4aX4ijÞZij þ ðb1bX1ij þ � � � b4bX4ijÞð1� ZijÞ;
Bmm ~ Betað2; 1Þ;
bi ~ Nð0; 10Þ:

ð11Þ

We consider group membership fixed to the home school for each staff mem-

ber. If teachers divide their time among multiple schools, we used the school

TABLE 6.

Density Estimates for the Auburn Park Advice-Seeking Network: Overall Density and

Within-School and Between-School Densities Indicate Teachers Interact With Teachers

Within Their Own School More Than Teachers Outside Their School

Density Within Density Between Density

.010 .113 .002

School Size (nk) Within Density

30 .090

32 .121

28 .114

35 .111

28 .103

32 .978

20 .153

28 .136

28 .094

33 .107

28 .123

26 .089

23 .134

18 .196

Note. Within-school densities for each school are also provided to show variability by school and

smaller networks tend to be more dense.
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reported by the teacher as their designated school. Note that for this particular

model, we only estimate the diagonal entries of the B matrix as parameters and

constrain the off-diagonal elements to be fixed at .002. We also chose a fairly

uninformative prior, a Beta distribution (2,1), for the diagonal elements. Simi-

larly, we used a weak prior, N(0,10), for the covariate effects. For an adequate

posterior sample of 360, we excluded a burn-in sample of 2,000 iterations and

retained every 50th sample of our 20,000 step chain.

To estimate regression coefficients in the CSBM, we use expected a posteriori

(EAP) estimates along with 95% equal-tailed CIs. These estimates are given

in Table 7 and can generally be interpreted in a similar way as logistic regression

coefficients. As predicted, staff members sought leaders for advice or informa-

tion throughout the Auburn Park district, but there is a difference between con-

tent leaders and formal leaders. Content leaders were much more likely than

other staff to be sought for advice within their own school (2.10), but only

slightly more likely to be sought for advice from someone at a different school

(0.44), whereas noncontent formal leaders were only slightly more likely than

other staff to be sought for advice within their own school (0.40) and more likely

to be sought for advice from staff in other schools (0.80). Regarding seeking

advice, we found that both content and noncontent formal leaders were more

likely to seek advice outside of their home schools (1.16 and 2.12, respectively)

but were somewhat less likely to seek advice within their home schools (�:28

and �:36, respectively). This suggests that resource and information gathering

among leaders likely occurs at the district level between schools and then is dis-

seminated throughout one’s home school.

In-degree

Fr
eq
ue
nc
y

0 10 20 30 40

0
50

15
0

25
0

Out-degree
Fr
eq
ue
nc
y

0 2 4 6 8 10

0
20

40
60

80
10
0

FIGURE 2. Histograms of in-degree (left) and out-degree (right) suggest that staff mem-

bers seek advice from several people, but that very few people receive requests for advice

and those who do are likely to receive requests from a very large number of people.
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4.2. Fitting a Posteriori CSBM to Auburn Park Data

When block memberships are unknown, we can use an a posteriori CSBM to

estimate them. To illustrate fitting this model, we again use the Auburn Park

advice network data. To explore how group membership is recovered, we now

treat covariate effects as being constant across all blocks, but respective covari-

ates are the same as before, indicators that the sender is a content leader, receiver

is a content leader, sender is a noncontent leader, and receiver is a noncontent

leader.

The fitted a posteriori CSBM is given as:

Yij ~ BernoulliðpijÞ;

pij ¼
expfgi

T logitðBÞgj þ bXijg
1þ expfgi

T logitðBÞgj þ bXijg
;

bXij ¼ b1X1ij þ . . . þ b4X4ij;

gi ~ Multinomial

�
1;

1

14

	
;

Bmm ~ Betað10; 80Þ;
bi ~ Nð0; 10Þ;

ð12Þ

where the group membership prior distribution is the multinomial distribution

with equal probability of belonging to one of the 14 groups. We use a stronger

prior to aid with block estimation and use a Beta distribution centered at the aver-

age within-group tie density. For covariate effects, we again use a weak normal

prior with a large variance.

We first examine group membership estimates. The posterior distributions for

g for the first 60 individuals in the network are shown in Figure 3. The first 30

individuals all report belonging to the same school, but group membership is

unclear for these individuals. The posterior distributions imply that many of these

individuals appear to belong to 2–3 groups or even more groups for some

extreme cases. Group membership is more clear for Individuals 31–60, almost

all of whom are estimated to belong to Group 13 with high probability.

TABLE 7.

Posterior Means (EAP) and Equal-Tailed Credible Intervals From the A Priori CSBM Fit

Covariate

Within Block Between Block

EAP 95% CI EAP 95%CI

Content leader Sender �0.28 [�0.58, 0.01] 1.16 [0.85, 1.45]

Receiver 2.10 [1.92, 2.28] 0.44 [0.18, 0.70]

Other leader Sender �0.36 [�0.53, �0.19] 2.12 [1.90, 2.35]

Receiver 0.40 [0.24, 0.54] 0.80 [0.56, 1.04]

Sweet

655



Our classification matrix showing the true block (school) membership for

each individual versus the estimated block membership is given in Table 8.1 The

classification rate is 62.7%, which is similar to the classification rates found in

Section 3.3.

Furthermore, Table 8 reveals that some of the schools are being grouped

together as one school and others are being divided. For example, individuals

in Schools 3 and 9 are estimated as belonging to the same school. The same is

true for Schools 5 and 12 and Schools 7, 11, and 13. Such a lack of distinction

between blocks is likely due to both the low within-school density and the large

number of blocks. For example, both Schools 5 and 12 have slightly lower

within-school density and School 5 has relatively high across-group density. In

other circumstances, it is less clear. For example, there does not appear to be a

particular reason that School 7 is grouped with Schools 11 and 13. As a result

of these consolidations, the model estimates that the 389 school staff belong to

10 or 11 blocks.

To further expound on block estimation, we also calculated lower bounds

on classification rates to perhaps illustrate that the classification rates are not

terrible. In fact, if block membership were randomly assigned, we’d expect a

classification rate near .155, a value empirically derived through Monte

Carlo simulation. Thus, our model is detecting a good bit of subgroup struc-

ture. Another metric we could use is the proportion of ties that are correctly

assigned as belonging to the same or different groups. We found that 93.7%
of our pairs of nodes were correctly classified as belonging to either the same

group or different groups, as compared to an expected value of 82.5% when

group membership is assigned at random. Regardless of which measure we

use, the a posteriori CSBM is able to correctly estimate some of the observed

subgroup structure.

Despite underwhelming classification rates, the covariate effects appear to be

well-recovered. To compare the effects of estimating block membership on cov-

ariate effects, we also fit the analogous a priori CSBM using the same four cov-

ariates. The results from each model are given in Table 9. In general, the

covariate estimates from the a posteriori CSBM are very similar to the analogous

estimates from the a priori CSBM, and the 95% CIs overlap, substantially in

some cases. The a posteriori CSBM 95% CIs are slightly wider than the corre-

sponding a priori CSBM intervals which is unsurprising given in the additional

parameters in the a posteriori CSBM. In addition, we compare Bmm in the a

priori CSBM and a posteriori CSBM model fits. The mean EAP estimates for

Bmm are .09 and .06 for the a priori and a posteriori CSBM fits, respectively.

Although entries of the B matrix adjusted for some of the block misclassification,

we also notice that the a posteriori CSBM point estimates and corresponding

intervals are slightly more positive than the a priori CSBM, suggesting that incor-

rect classification of individuals may bias covariate effects.
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5. Discussion

We presented a class of models, CSBMs, which allows researchers to model

social network data in the presence of existing subgroups or blocks. Students

and teachers in schools often form subgroups, either through formal organiza-

tion, such as departments or schools, or through informal selection, such as

working in the same area or teaching the same group of students. While mod-

els that relate individual traits to these subgroups are useful, researchers are

also interested in the relationships that form or persist in the presence of

this subgroup structure, and CSBMs are particularly suited for these types of

research questions.

One particularly novel aspect of the CSBM framework is the ability to esti-

mate covariate effects between subgroups, which has not been addressed in the

education literature; in fact, a similar model was only recently introduced in the

statistical data mining literature (Airoldi et al., 2011). Because CSBMs incorpo-

rate covariates independently of subgroup structure, they are unique in that cov-

ariates can vary both between and within blocks. In fact, understanding why

individuals form ties outside of their subgroup (and with whom) is of particular

interest to education researchers (Spillane, Hopkins, & Sweet, in press).

In addition to illustrating model feasibility with real network data, we con-

ducted several simulation studies not only to further demonstrate the utility of

these models in practical settings but also to show how robust these models are,

specifically with respect to covariate parameter recovery. For example, we

hypothesized a possible identifiability issue with estimating the B matrix, but

we found little effect of either estimating B or the variance of the covariate on

covariate parameter recovery. We did find that parameter recovery generally

decreases when estimating group membership, especially when group member-

ship estimation is poor, but parameters are generally recovered with decent prob-

ability, even as the variance of the covariates increases. Finally, we found that

very low within-group tie density negatively impacted block membership estima-

tion. Our exploration with a real-world data set also corroborated these findings,

since covariate effects were quite similar under the a priori CSBM and the poster-

iori CSBM, where group membership was not well recovered.

TABLE 9.

Regression Coefficient Estimates for Indicator Variables

Covariate A Priori CSBM A Posteriori CSBM

Content leader Sender 0.27 [0.05, 0.50] 0.36 [0.12, 0.62]

Receiver 2.24 [2.09, 2.38] 2.42 [2.22, 2.59]

Other leader Sender �0.11 [�0.25, 0.04] 0.06 [�0.13, 0.25]

Receiver 0.57 [0.43, 0.71] 0.81 [0.64, 0.98]
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Regarding methodological research, there are many open areas for future

work. Given the proposed models, we examined block membership recovery and

covariate parameter recovery under certain conditions, but these simulations

could be extended. In particular, we employed equal-sized blocks, and one open

question is whether variability in relative block size affects block membership

estimation. In the Auburn Park example, blocks sizes varied and we found that

block size did not appear to be related to block recovery. In fact, the smallest

school was recovered fairly well (1 node was misclassified and 7 other nodes

were incorrectly estimated as belong to this school). In our own experience,

we find within-block density to be the strongest predictor of block recovery even

when working with blocks very different in size. Generally, if the block has at

least a few nodes and the within-block density is above a certain threshold, it will

be recovered even when among blocks several times larger in size.

Another area of research is on block-varying covariate effects. We fit models

in which covariate effects varied within and between blocks, but certainly there

are situations in which we would want covariates to vary across all combinations

of interaction. Our simulation studies were largely not affected by identifiability

issues, but identifiability is not a trivial issue and determining the circumstances

in which parameter recovery is compromised is very important. Focus should

also be paid when covariates conflate with block structure. Finally, we assumed

independence between block membership and covariates when generating data,

but we might consider how including a relationship between block membership

and covariates affects not only parameter estimation but also model fit in general.

Other models are also possible within this framework. We may be interested

in introducing a mixture component and investigate covariate recovery when

using a mixed membership stochastic blockmodel rather than a stochastic block-

model. Sweet et al. (2014) introduced such a model but did not explore any of the

operating characteristics or consider possible estimation issues. Other models for

clustered network data, such as the latent position cluster model (Handcock, Raf-

tery, & Tantrum, 2007), could also be considered.

The CSBM is a conditionally independent network model in that we assume

the ties are independent of one another given the parameters in the model (cov-

ariate effect and block membership). In fact, one of the unique benefits to fit-

ting network data with conditionally independent network models is that

covariates, random effects, and latent structural components such as blocks

or latent spaces (Hoff et al., 2002) can be combined in additive ways. Depend-

ing on the network structure, assumptions about the network nodes and ties,

and specific research question, we could combine these components to build

a very specific social network model to address that research question. There

is currently some work in this area (Dabbs, Adhikari, et al., 2014; Dabbs,

Junker, et al., 2014) and we believe this to be an area of active research in

the future.
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Modeling social network ties as independent is a poor assumption, as these

relationships rarely form or persist in isolation. In the case of the stochastic

blockmodel, we believe that incorporating relevant covariates into the model will

improve the model in two important ways. First, combining covariates and a sto-

chastic blockmodel should improve the power of the model to detect either cov-

ariate effects and block membership, and this work is currently being explored in

Dabbs, Adhikari, et al. (2014). Second and perhaps more importantly, adding rel-

evant covariates makes the assumptions of the model more believable. Network

ties, particularly in a large network such as Auburn Park (Section 4), are unlikely

to be independent conditional on only block membership; it is more accurate

to model ties as independent given both block membership and several important

covariates. In fact, Spillane et al. (in press) use sender, receiver, and edge-level

covariates in their CSBM.

Thus, CSBMs have great potential to inform future educational research

involving relational or network data in addition to methodological research on

social networks. Education researchers have a class of flexible models that can

both cluster individuals and provide information about relations within and

between these clusters. For example, Spillane, Hopkins, and Sweet (in press) fit

CSBMs to illustrate differences in covariate effects within and across schools

with regard to how advice and information is shared throughout the district. They

found that subject-specific leaders tend to seek advice outside of their own

schools but rarely within their own schools even though they are much more

likely to provide advice than other staff. Understanding how social resources are

shared within a school district then informs district policies and decisions. Since

school leaders tend to obtain information outside of their schools, district leaders

may encourage organizational routines to enable these interactions. Finally, these

models are especially easy to understand because the covariate effects can be

interpreted in a similar way as generalized linear model coefficients, since cov-

ariates are incorporated in an additive way.
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